Using Data Structure Properties in Decision Tree Classifier Design
نویسندگان
چکیده
منابع مشابه
Using Data Structure Properties in Decision Tree Classifier Design
This paper studies the techniques of performance enhancement for decision tree classifiers (DTC) that are based on data structure analysis. To improve the performance of DTC, two methods are used – class decomposition that uses the structure of class density and taxonomy based DTC design that uses interactions between attribute values. The paper shows experimental exploration of the methods, th...
متن کاملLand Cover Classification Using IRS-1D Data and a Decision Tree Classifier
Land cover is one of basic data layers in geographic information system for physical planning and environmentalmonitoring. Digital image classification is generally performed to produce land cover maps from remote sensing data,particularly for large areas. In the present study the multispectral image from IRS LISS-III image along with ancillary datasuch as vegetation indices, principal componen...
متن کاملland cover classification using irs-1d data and a decision tree classifier
land cover is one of basic data layers in geographic information system for physical planning and environmentalmonitoring. digital image classification is generally performed to produce land cover maps from remote sensing data,particularly for large areas. in the present study the multispectral image from irs liss-iii image along with ancillary datasuch as vegetation indices, principal componen...
متن کاملland cover classification using irs-1d data and a decision tree classifier
land cover is one of basic data layers in geographic information system for physical planning and environmentalmonitoring. digital image classification is generally performed to produce land cover maps from remote sensing data,particularly for large areas. in the present study the multispectral image from irs liss-iii image along with ancillary datasuch as vegetation indices, principal componen...
متن کاملQuantum decision tree classifier
We study the quantum version of a decision tree classifier to fill the gap between quantum computation and machine learning. The quantum entropy impurity criterion which is used to determine which node should be split is presented in the paper. By using the quantum fidelity measure between two quantum states, we cluster the training data into subclasses so that the quantum decision tree can man...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Journal of Riga Technical University. Computer Sciences
سال: 2010
ISSN: 1407-7493
DOI: 10.2478/v10143-010-0051-5